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The plane model proposed by N. N. Verigin for a stabilized fresh water lens pro- 
duced by uniform infiltration is investigated in hydrodynamic formulation in the 

case of equidistant horizontal slit drains, Formulas are obtained for the separa- 
tion boundary, the depression curve, and characteristic dimesions of the lens. * 

1, Statement of problem, The considered pattern of flow is shown in Fig. 1, 

An infinite system of parallel slit drains of the same width 2h normal to the ~:y -plane 
is disposed along the x -axis (the y-axis is directed vertically upward). We assume that 

CY the soil is homogeneous and of unbounded 
depth,and the distance between the middle of 

A 

: 

adjacent drains is instant and equal 2L. Fresh 

a* jY 
water of density p1 seeps from the surface of 

t 6-h 
- --._. 

G 
t 

* the soil over the free boundary (the depression 

R curve AB), passes through the lens (region 

i I 4 H 
E , 

tLYYZYL _:k;~ 

G) , and is drawn off through the drains. Salt 
ground water of density pz lies below the sepa- 

ration boundary (curve EF) . The ease of in- 

Fig. 1 complete flooding of drains is considered and 
it is assumed that infiltration intensity E. (per 

unit length of the z -axis) is oonstant, the ground water is stationary [I, 21, and the mo- 

tion in the lens is stationary. 
Investigation of the described modef which is periodic with respect to :r of period z& 

and symmetric about the y-axis reduces to the solution of the following mathemati~l 

problem (11. We have to construct region G of the form shown in Fig. 1 with a pair of 
harmonically conjugate functions ‘f and @ inside it, so as to satisfy the boundary condi- 

tions 
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((P + !/)/AL? = [$ + Eo(L -~)I]AB = cP1nc.c~ = (1.1) 

$ IDE,EF,FA = ('P-PO!/ -VI) IEF = 0 

PO =(P.L - PI) 1 PI, &o = f 1 fc 

where cp and Q are, respectively, the velocity potential and the stream function norma- 

lized with respect to the ground filtration coefficient h_ , and ‘pr is some constant. In 

what follows the complex potential is deno- 

able p = t f jq and functions z (5) which 

conformally maps the upper half-plane 
Fig. 2 Im 5 = q > 0 onto region G (the corre- 

spondence of points is shown in Fig. 2) and 
the complex velocity W = u - iv = do ! dz and 

2 (5) =dz/ d<, 

Q(C) =do/dj 
62) 

2, Conrtruction of function w (5). The hodograph region which corre- 
sponds to boundary conditions (1.1) [l. 31 is shown in Fig. 3. Using the transformation 

Fig. 3 Fig. 4 

(2.1) 

6 = ~/PO + En +- I/en (1 + PO) 

VPofQ-VQGi ’ 

a, p2I.i 
80 &(a+ I) 

it can be converted into a horizontal half-band of width x 

with a vertical slit (Fig. 4). Using the Schwarz-Christoffel 

formula for function IV we obtain 

(2.2) 

where cO is the unknown constant and 5 = q is the inverse 
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image of an infinitely distant point of the half-band relative to the image W= W ( c). 
In the W-plane (Fig. 4) the half-band width and the length of segments FA and BC 

are specified. It is also known that the distances between points F, E’ and L’, E’ are 

the same. Hence parameters co, f, 4, e’ and C must satisfy equations 
0 

co(q-e')cD,(q)=i, lno=co (2.3) 

(the branch (Do is chosen so that arg CD, = 0 for 1 < 5 = E < + m) . 

Investigation of this system is conveniently carried out with the substitution of the 
following new quantities : 

h”=&, P2= 3, q - e' 
v=y-q, 6= 1-f 

c-f 
(2.4) 

for parameters f, q, e' and C This reduces the first equation of system (2.3) to the 
form 

co=+J-- - (2.5) 

while the last, after some simple transformations, determines the dependence 

v = v (a, p) = (1 - a2p2)K (a’) [K (h’) - a2p2rI (lu2p2 - p - (2.6) 
1, A’)], h’ =1/l -2.2 

where K (h) and a (l.~, 1) are complete elliptic integrals of the first and third kind, 

respectively 141. 
It follows from the first two equations of system (2.3) that 

By substituting t = 1 - s / f for the variable of integration and (2.6) for Y we ob- 

tain K (h) [K (A’) - h~y2ll (h2p2 - 1) A’)] = 

(1 - hap2) K (A’) [I2 (- h2p2, h) - + In 0 jl/(i - p2) (1 - h”u’)] 
L 

It remains to express the complete elliptic integrals n of the third kind by incom- 
plete elliptic integrals of the first and second kind and then apply Legendre’s relation- 
ship [4]. As the result, we obtain the relationship 

p = sn (K (3L) - K (A’) In o / n), h, < h < 1 (2.7) 

where sn denotes the elliptic sine modulo ?L, and hs is determined by the equation 

In o / n = K (a()) / K (ho’), 0 < a, < 1 (2.8) 

To determine parameter 6 it is sufficient to use (2.4) and (2.5), and rewrite the last of 
remaining equations of system (2.3) in the form 
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3. Construction of functiona x(g) and o (t). The analytical theory of 

linear differential equations, first applied for solving filtration problems in [5], is used 
here. According to that theory real values of “accessory” parameters &,, fil and a pair 
T/‘l, V, of linearly independent solutions of the equation 

V” + a (c)V’ + b (C)V’ = 0 (3. I) 
-1 

a(5) = t___el + 

b (5) 

with singular points 

can be found. 

=(I% + ICC) iCP --4 (Cm- f)5 (5 - l)l-l 

5 = e’, f, 0, 1 and oo., such that 

w(5) =V,(Q/V,(5) (3.2) 

By virtue of the relationship 

V,‘V, - V,V,’ = exp [- j ad 51 con& 

which is valid for any two linearly independent solutions vl and v, of Eq, (3. l), the 

latter implies that W,V 2 
2 = const (5 - e’). [( 5 - f) 5 (5 - 1)1-‘/s 

Substituting expressions (2.1) and (2.2) into the left-hand part of this equality,we first 

determine v2, and then, from (3.2) obtain V,. It follows from (1.2) and (3.2) that 
52 / V, = 2 / V, = f (g) , where f (5) is some function which can be determined by 

comparing the singularities of functions Q and 2 obtained from the boundary condi- 
tions (1.1) with those of solutions V1 and V,. Such comparison shows that the product 

f (5) 1/( 5 - f) 5 ( c - 1) ( 5 - d) is regular and bounded throughout the closed 
plane 5. Consequently it is identically equal to a constant, hence 52 and Z are deter- 
mined. 

Now, using (1.2), it is possible to write expressions for the unknown functions o ( 5) 

and 2 (5) 

w = - p,R + (~14 cl { FF -$] g& (3.3) 

cm 

z=-iR_i$- 
‘f 

ar aa- 
aF+ $I& 

where c1 denotes the unknown constant, function W (5) is defined in Sect. 2, and branch 

g is chosen so as to satisfy the condition arg g = 0 ior max (d, g) <L= E <too. 
The characteristic dimensions of the lens (Fig. 1) are: I, the drain width 21a, the lens 

width 2L, the maximum height T of the depression curve, and the maximum and mi- 
nimum distances H and R , respectively, of the separation boundary from the level of 
drains. For these quantities we obtain from (2.3) the following expressions: 

L= +p+a) ( cos v4 @I lg CD 16 (3.4) 
-co 



998 

2 = .L - -$- (a i- P) J sin If8 (%)I I g (5) I dE 
0 

where g ( 5) is taken from (3.3) and functions fr (Q, . . . , 1’4 (E) which are determined 

with the use of (2.2) along segments (1, c), (0, 1), (f, 0) and (-00, j) , respectively, 
are defined by formulas 4 

~~{~)~~~~~~~~, ~~~~~~~~~~~~~ (3. S) 
1 E 

It was shown in Sect. 2 that 4, err c and co are uniquely defined by the specified 
value of parameter f . Hence for the determination of characteristic dimensions of the 

lens in (3.4) it is sufficient to specify parameters f, d and ci > 0 only. (Expression 
of the kind of (3.4) can be obtained for the constant cp; which appears in boundary con- 

ditions (1.1)). 

In this notation the separation boundary EF (Fig. 1) which in the g-plane corresponds 

to the real semiaxis g < f assumes the form 

It follows from (2.2) and (2.3) that function j, (6) monotonically inoreases from zero 
to &I / 2 < n / 2 (Fig. 4) when E changes from - w to e’, and when E approaches 

f it tends monotonically to zero. This, owing to (3.6) means that x2’ (Q > 0 and 
ys’ (g) < 0 . Hence the separation boundary can be specified by the equation y = 
ys (x), where yz (x} mo~otoni~lly decreases from y% (0) = -23 to yz (L) = - fiT, 
with dy, / C&E vanishing at points z = 0 and CG = L the depression curve A& (Fig. 1) 
is the image of segment 0 < i < 1 of the real axis of the 5 -plane for mapping z ( 5) 
and is defined by formula 

z ==21(~)~z + ~(u+P)~sinlfs(s)l/g(s)Ids (3.7) 

4 
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y = y1 (E) E +- (a - P) L Ifs (41 I g (4 I ds 
i 

The considerations in Sect. 2 imply that fz (E) monotonically decreases from zero 
to n / 2, with E increasing from zero to unity. This in turn implies that ~1’ (E) < 0 

and YI’ (E) < 0, h ence it is possible to use the equation y = y1 (z), which monoton- 

ically increases from y1 (0) = I to y1 (L) = T , instead of (3.7), with ~1’ (I) = 
+ co and yl’ (1,) L- 0. 

It is now possible to determine the distance from the drain to the initial (horizontal) 

ground water table y = --H, (Fig. 1). For this we denote by (ICY, --H,) the point of 
intersection of the separation boundary y = yZ (x) with the straight line y = --H,. 
If S, is the area enclosed between curves y = ys (x) and y = ---H, for 0 < 5 < 
zO, and S, is the similar area for 50 < x < L, then the equality A’, = S, must be 

satisfied. From this we obtain the sought expression 

(3.8) 

4. Mapping parameter8, limit c11ea, In the direct formulation mapping 
parameters f, d and cl are the unknowns. For their determination it is sufficient to 
specify any three characteristic dimensions of the lens. Here the lens width 2L, the 

drain width 2h , and the distance HI between the drain and the unperturbed level of 

ground water have been chosen for these. Then for given f and d the first of expres- 
sions in (3.3) evidently determines c1 > 0. The latter plays the part of the modulus of 

expansion and can be eliminated by normalizing all dimensions of the lens with respect 
to its half-width 

+, h”-_~,T”=~,~“=~,H”=~,H,“=~ 

Below we use parameters (2.4) and substitute 

for d . 
Formulas (2.4) - (2.9), (3.4), (3.8) and (3.6) yield the system of equations H,” = 

H,” (A, z), h” = h” (h, T) which will be used for determining ?L and T. 
The difficulty of the analytical investigation of this system is due not only to the corn- 

plexity of functions H,” (A, T) and ho (A, T), but also to the necessity of investigat- 
ing the limitations which in the plane HI“, h“ define the region of applicability ofthe 
considered flow pattern. The first of these limitations is the consequence of the motion 

symmetry about the y -axis and is expressed by the inequality 1 > 0. The second sti- 
pulates that the maximum height T of the depression curve must nbt exceed the distance 

from the ground level to the plane of drains. The third limitation is less evident, and will 
be dealt with below. 

The mapping parameters h and T were determined by numerical methods. For this 
EO and po were specified, and ho was determined by (2.8). Then h was fixed in the in- 

terval (?Q,, 1) and pi V, Co and b were calculated by (2.5) -(2.7) and (2.9x respec- 

tively. The latter were substituted into (3.4)and (3.8). the subdivision of interval 

(A)) 
(0, 6, 

was decided uponand the characteristic dimensions of the lens were calculated 
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for each r2 of the subdivision. A similar procedure was carried out for various values 
of h. The ~l~u~tions had shown that HI0 (h, Z) monotonically increases with in- 

creasing ‘C - This made it possible to determine the inverse function ‘r -- z (?L, II,@) 

and investigate the relationship k” (3L; H,‘) = ho (J,, T (h, H,“)). The latter proved 
to be monoronically increasing with h and it became possible to determine h for spe- 
cified h” and Hr”. 

The effect of the drain width on the nature of change of the lens dimensions is illus- 
trated by the following example, Let p,, = 0.01, E. = 0.1, ErO = 1 and h”runs through 
0.6, O-7, 0.8 and 0.9. The calculations yielded : T, = 0.0427, 0.0312, 0.0204 and 
0.0101; R’ = 0.7034, O-8737, 0.9497 and 0.9868; Ho = 1.1408, 1.0912, 1.0522 and 
1.9134; I" = 0.5969, 0.6946, 0.7995 and 0.8997 , respectively, It will be seen that with 

increasing ho parameter 7’” decreases. while R* approaches iEi’” and tends to H,L (a simi- 

lar behavior is observed for other values of parameters pa, a0 and HP). Analyticaf inves- 
tigation had shown that p -f 1,~--+2,6--+1,1P-r1 and !P-+O,whenh+f,with 

the separation boundary becoming the straight line y = y, (2) = - H, = *- LK f$ I 
K (7'). Thus this limit is characterized by the linking of adjacent drains, which results 
in the disappearance of the ground water bulge. The lower part of the lens is now com- 

pletely isolated from infiltration, motion inside it ceases, and the separation line flattens 

out and reverts to its initial position, In the above example the value of h is close to 

h, defined in (2.8) when h” = 0,6 . 
It can be shown that when h --f h, , then p -+ 0, v --+ ‘f, 6 tends to the com- 

pletely determined value 6 (ho) , and the length of the slit EE’F in the W-plane 

(Fig. 4) tends to X . At the limit the point of inflection E’ (Fig. 1) merges with point 

E which becomes a cusp, and in the hodograph plane the semicircle 1 53 - pn / 2 1 < 
po/2 “falls out”. Parameter h” then tends to some value k+,” which is the minimum 

admissible for the considered pattern of flow, and this represents the third limitation 

mentioned earlier. From the physical point of view h i” may be considered rhe critical 

value of the drain width for specified po, E, and HI”, since for ho < h,” the drain 
cannot cope with the drainage of infiltrating water. When h” = h,” the intensity of 

filtration is at its.maximum throughout the range h,* < h” < 1 , and the rate of fil- 
tration Q -_ a0 (1 - P) ,kL reaches maximum, while the drain width is minimum. 

Calculations show that iz,” decreases with increasing Hi”; for example, for p0 z-7 0.01, 
co = 0.1 and HI0 = 1 .k the critical width h,” is close to 0.39. 

It can be shown that for h = Lo and r + 0 , the cusp E reaches the drain: K”-+O 
The equations of the separation boundary and of the depression curve beCOme, respect- 

ively, 
y- -HVcl -(l-x/L)2, O<r<L 

g=TI/l -(I --stL)2t(1--I/L)2, l<x<L 

This limit case was previously considered in [7]. 
A further characteristic property follows from calculations: for fixed PO, Hi0 and A” 

the remainder h” - 1” increases with increasing Ed. Thus, for example, for p0 L= 0.01, 
H,” = 1 and h” = 0.8 the values E,, IL- 0.1, 0.5 and 0.7 correspond to h” - 

lb = 0.0005, 0.0318 and 0.081. From the physical point of view such behavior is 
completely natural. 

Let us point out one more limit case of the considered problem, namely po -+ co. 



Fresh water lens produced by u.Iform ir.filtration 1001 

It follows from (2. l), (3.4) and (3.7) that in that case R" - H" + 0 and the separa- 

tion boundary becomes the straight line y = yz (x) = - H. i.e. that boundary be- 
comes an impermeable base. 

The author thanks N, N. Verigin for the formulation of the problem and V. N. Emikh 
for valuable remarks in the course of solution of the problem. 
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We propose one of the possible versions of the optimum control of the forced 

motions of elastic systems of the type of rods, plates, and shells. We apply the 

procedure developed to elementary problems on the transition of a freely-suppor- 
ted rod or plate from an initial state ‘p, 0 to the rest state in the least possible 
time T in the presence of a constraint on the forcing load. We use the elemen- 

tary results of theory of the I-problem of moments of Krein [l - 31. 

1. We consider a hinge-supported rod undergoing forced motions under the action of 
a load f (2, t). The complete system of equations defining the state of the rod at any 
instant 1 has the form d*x G+$&a$&.& % E (0, 1) t>o 

w (0, t> = w (I, t> = 0, w,, (0; t) = w, (I, t) = 0 
(1.1) 

1L’ (2, 0) = ‘p (Z), w’ (.x., 0) = $ (x), u>’ = dw / dt 


